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In this article, theories of rolling tyre vibrations are presented. In previous
publications, tread pattern was neglected and authors have studied vibrations in
smooth tyres. When heterogeneity caused by a tread pattern on the tyre belt is
introduced, it is shown that vibrations can be described by linear equations with
time periodic coe$cients. Firstly, the perturbation method is applied for a nearly
smooth tyre, and the &&self-excitation'' phenomenon, a general feature in time
periodic linear systems, is illustrated with the semi-analytic expressions obtained.
Then, the generalization to a strong heterogeneity is achieved using the Bloch wave
theory. This theoretical background suggests the decomposition of experimental
data of noise in time signals for a given phase as compared to the wheel rotation.
Finally, an e!ective method for numerical computations of vibrations is proposed;
it uses the Floquet theory, a consequence of the Bloch theory. Finite element
formulation and algorithm are derived for the heterogeneous &&circular ring model''.

( 2000 Academic Press
1. INTRODUCTION

The propagation of waves in tyres is a cause of rolling noise. Compared to classic
vibration analysis, rolling tyres have speci"c characteristics that make the results of
modal analysis di!er from experimental data.

The "rst characteristic of tyres is that they roll on road. The classic modal
analysis is developed for vibration analysis of a nearly immobile object, when the
particles in contact with other objects remain the same. In the case of tyres, the
structure has a global rotation, and the particles in contact with the road change
with time.

Some results on the vibration analysis of a rolling tyre were achieved in the case
of smooth tyres. In Huang [1] or in Vinesse and Nicollet [2], the rotation was
introduced in vibration analysis. In reference [1] the contact with the road has also
been investigated. The main problem was to take into account a contact condition
0022-460X/00/110037#41 $35.00/0 ( 2000 Academic Press



38 P. CAMPANAC E¹ A¸.
with the road. The method used by these authors is called impedance method and
consists in solving the following loop problem. At "rst, the contact with the road is
represented by given loads on the contact point; these loads are assumed to be
at constant frequency. The vibration solution of the rolling tyre submitted to
these loads is calculated and the solution in the contact point with the road is
examined. Then, the loads that represent the road action are modi"ed until a zero
displacement in the contact point is obtained. This problem has solutions only for
some frequencies. It is shown that these frequencies are the natural frequencies of
a rolling tyre, with contact. These studies showed that both mode shapes and
natural frequencies depend on rolling speed.

The second characteristic of commercial tyres is that they are not smooth. They
have a tread pattern and this pattern turns when tyres roll.

Impulse excitations at di!erent instants t
1

and t
2

of the same tyre give di!erent
measures of pressure after a delay q, depending on the tread pattern position
comparative to the ground: if rubber blocks are not in the same position as
compared to the ground at time t

1
and t

2
, then vibrations and sound measured at

time (t
1
#q) and (t

2
#q) will be di!erent. So, it is shown that there exists an

in#uence of the rotation of the rubber blocks on the dynamic properties of a rolling
tyre. The presence of grooves in the tread makes frequency uncoupling impossible,
and modal analysis does not apply to this kind of systems.

Note that a model of a non-rolling smooth tyre was used for the study of wave
propagation in a rolling tyre with a tread pattern by Kung et al. [3] (and related
articles [4}6]). The e!ect of the moving tread pattern on wave propagation was
neglected in these articles.

The aim of this article is to present the vibration theories that allows one to take
the tread pattern into account and to compare theoretical results with experimental
analysis.

For simpli"cation, equilibrium equations obtained for a &&circular ring model''
will be used. They have been recently used by Huang [1], Kropp [7] or Cuschieri
et al. [8], and they are reiterated in section 2.

When the belt heterogeneity is small, the tyre can be considered as nearly
smooth. Starting from the modal decomposition of vibrations in a smooth tyre
studied in references [1] or [4], the perturbation theory is applied in section 3 to
take into account a weak tread pattern e!ect. In this work, it is shown that the
di!erence from modal analysis is that when the structure is excited at pulsation
u

0
by an external force, the response contains all pulsations u

0
#qXI , where q

is a relative integer and XI is the fundamental pulsation of tread pattern impact
on the road. This is caused by internal forces of disequilibrium usually called
&&self-excitation forces''.

Nevertheless, this theory is approximate and can be applied only when internal
forces of disequilibrium are weak. This theory may not be suitable for tyres with
a strong heterogeneity (for example tyres with a winter tread pattern), or at
high rolling speed. Linear systems with time periodic coe$cients are generally
characterized by Bloch waves. In section 4, the theory of Bloch waves will be
explained and the consequences on experimental procedures will be derived. The
decomposition into Bloch waves is similar to modal decomposition and the Bloch
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wave presentation of experimental or numerical data makes the dynamics of a
rolling tyre easy to understand.

Nevertheless, the Bloch wave decomposition is not of practical interest for
vibration computations, because it requires the diagonalization of very large
matrices whose sizes are the number of degrees of freedom of the mechanical model,
times the number of time steps in one period of revolution of the wheel. At high
rolling speed, where the spectrum contains high frequencies, the time steps can be
very small to catch these frequencies. Moreover, the spatial mesh can be very "ne to
catch the small wavelengths. Because of this, the Bloch wave decomposition is
usually not used for computations, and the Floquet theory is preferred.

The Floquet theory is a consequence of the Bloch wave decomposition: the
decomposition in Bloch waves is partially predicted with the Floquet theory. The
resolution is based on the calculus of the transition matrix. Its size is just the double
of the number of degrees of freedom in the mechanical model. The transition matrix
diagonalization exhibits the Floquet coe$cients. These coe$cients show the
in#uence of tyre characteristics (for example damping) on vibration properties, like
the natural frequencies in the classical theory, and allow the qualitative study of the
dynamic response, especially if the excitation sources are unknown. In Bradley [9],
this theory was used for the study of the propagation of waves in ducts with a periodic
cross-section. In Sinha and Butcher [10] and in Guttalu and Flashner [11], this theory
was used for the study of the stability of heterogeneous objects in rotation. No external
excitation was considered. It will be seen in section 5 that the method can be extended
to the present case with excitation and equations for tyres will be derived.

In the main body of this article, theories when the damping is neglected will be
presented. In the Appendices, damping is introduced.

2. EQUILIBRIUM EQUATIONS OF THE &&CIRCULAR RING MODEL''

A polar co-ordinate system (r, h) is used. It is centred on the centre of the wheel.
The radial vector is called e

r
, the tangential vector is called eh.

The tyre belt is modelled by a circular beam of radius a and of width z, turning at
constant rotational speed X in a plane in translation with the car. The position of
a particle at time 0 is indexed by b, its polar angle on the circle of radius a. Its
position at time t is indexed by the angle h"b#Xt. The value of this position is
the sum of X (t, h), the position obtained when inertia and viscosity e!ects are
neglected, and a displacement that allows the reintroduction of dynamics and
corrects the "rst approximation X (t, h). This displacement is denoted by u

r
(t, h) in

the radial direction and by uh (t, h) in the tangential direction (see Figure 1).
Only equilibrium equations satis"ed by u

r
and uh are studied, and the value

X (t, h) is assumed as known. Its in#uence on the displacement is a force with
components q

r
and qh (see Campanac [12]).

2.1. DERIVATION OF THE LAGRANGIAN OF THE SYSTEM

Recall brie#y the mechanical hypothesis of the &&circular ring model'' of a rolling
tyre. The method to obtain equilibrium equations is the same as the one used the



Figure 1. The tyre geometry. A: rim; B: sidewall; C: carcass; D: tread.
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cited articles, that is, derive kinetic energy, elastic energy and potential energy for
the system, and use Lagrange principle to get equilibrium equations.

The main di!erence from the former publications are:

1. The referential is chosen in translation with the car but not in rotation with
the wheel. This referential is more natural for the study of rolling tyre
vibrations.

2. A di!erential system of "rst order in time is needed for the natural frequency
problem. The displacement vector "eld u (t, h) and the relative speed vector
"eld v(t, h) are used in the formulation of the problem.

2.1.1. ¹he kinetic energy ¹

The displacement of a turning particle that is in h"h
0

at time t"t
0
, is given by

u
r
(t, h

h
)e

r
(h

h
)#uh (t, hh

)eh (hh
) (1)

where h
h
"h

0
#X(t!t

0
). The speed of this particle is the total derivative in t. The

derivative with respect to time of u
r
(respectively uh) is denoted by uR

r
(respectively

uR h), the derivative with respect to h of u
r

(respectively uh ) is denoted by
u@
r
(respectively u@h ). The speed vector is then

v
r
"uR

r
#Xu@

r
!Xuh ,

vh"uR h#Xu@h#Xu
r
.

(2)

The kinetic energy by unit of length ¹ is then

¹(v
r
, vh)"1

2
o(v

r
2#vh2) (3)

where o is the density of the beam, constant in smooth tyres.
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This expression is equivalent to the one in the cited articles. The di!erence comes
from the di!erent referential used here, that is in translation with the car but not in
rotation with the wheel.

2.1.2. ¹he deformations of the system

The tangential transformation at a given time t is calculated:

u
r
(t, h#dh)e

r
(t, h#dh)#uh (t, h#dh)eh(t, h#dh)!u

r
(t, h)e

r
(t, h)

(4)

!uh (t, h)eh(t, h)"A
1
a

u
r
#

1
a

u@hBadheh#A
1
a

uh!
1
a

u@
rB (!adhe

r
) .

During the transformation, an elementary vector adheh is extended by longitudinal
strain eh. Looking at the "rst term of the tangential transformation, the value of the
deformation is found to be

eh"
1
a

u
r
#

1
a

u@h . (5)

The elementary vector is also rotated around the direction perpendicular to the
plane e

z
by an angle c

z
. Remembering that e

z
'(adheh)"(!adhe

r
), it is found that

rotation is the second term of the equation. The value of the rotation is

c
z
"

1
a

uh!
1
a

u@
r
. (6)

The bending is by de"nition the derivative with respect to the co-ordinate ah of the
rotation of the normal vector to the beam. It is assumed that the rotation of the
normal vector to beam is the same as the rotation of the elementary vector, and so,
the bending sh (t, h) is

sh"
1
a

Lc
z

Lh
"

1
a2

u@h!
1
a2

u@@
r
. (7)

2.1.3. ¹he potential energy <

External forces are centrifugal force, in#ation pressure, force of excitation by
road bumps, and force of tread pattern excitation in the case of commercial tyres.
Centrifugal force is a radial force whose value is oX2a. Pressure is also a radial
force, its value being p

0
z where p

0
is the value of the in#ation pressure and z is the

width of the tyre. Excitation by road bumps and by tread pattern are modelled by
a force (see reference [12]). This force has two components q

r
(t, h) and qh (t, h).
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Finally, the potential energy is:

<(u
r
, uh)"!q

r
u
r
!qhuh!(p

0
z#oX2a)u

r
. (8)

2.1.4. Initial tension

Centrifugal force and pressure are balanced by the initial tension in the tyre t
i
.

The equilibrium equation of a segment of length adh gives

t
i
(eh (h#dh)!eh (h))#(oX2a#p

0
z)e

r
adh"0. (9)

This solution neglects the action of the sidewall, the reaction of the road, and the
geometry changes. It is therefore approximate. Finally, the value found for t

i
is

t
i
"a2oX2#azp

0
. (10)

2.1.5. ¹he elastic energy ;

Although it is not always the case in layered beams, the elastic energy per unit of
length is assumed to be uncoupled in a potential of free energy of longitudinal strain
and a potential of free energy of bending:

;
e
(u

r
, u@

r
, u@@

r
, uh, u@h )"t

r
(eh, cz)#t

b
(sh) . (11)

The bending energy is a quadratic function of sh :

t
b
(sh)"1

2
Ds2h , (12)

where D is a bending sti!ness of a beam. It is a constant in smooth tyres.
The potential of free energy of strain is a polynomial of the Cauchy strain e:

e"1
2

((1#eh)2#c
z
2!1). (13)

It has a linear term caused by initial tension:

t
r
(e)"t

r
(0)#t

i
e#1

2
K (e)2, (14)

where K is a beam sti!ness, constant in smooth tyres.
This expression is linearized up to second order:

t
r
(e)+t

r
(0)#t

i
eh#1

2
t
i
c2
z
#1

2
(t
i
#K )e2h . (15)
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In this expression the term t
i

is considered negligible in comparison with the
term K:

t
r
(e)+t

r
(0)#t

i
eh#1

2
t
i
c2
z
#1

2
Ke2h . (16)

The sidewalls are modelled by an elastic linear force that is applied to the belt.
The elastic behavior is assumed to be uncoupled in the radial and tangential
directions, and therefore the force of the sidewalls is characterized by two
sti!nesses, k

r
in the radial direction and kh in the tangential direction:

;
s
(u

r
, uh)"1

2
k
r
u2
r
#1

2
khu2h . (17)

In Schramm [13] and Hamet [14], it was suggested that the part of the tread in
contact with the road has an elastic energy. It is assumed that the contact area is
delimited by two given angles h

f
for the front of the contact area, and h

b
for the

back of the contact area, and that the tread is characterized by two sti!nesses, an
axial sti!ness w

r
and a shear sti!ness wh :

∀ h3[h
f
, h

b
] ;

tp
(u

r
, uh)"1

2
w

r
u2
r
#1

2
whuh2 . (18)

For smooth tyres, these two sti!nesses are functions of h, and are zero outside the
contact area [h

f
, h

b
].

2.2. THE EQUATIONS OF MOTION

In the following, equations involving only derivative of the "rst order in time are
required. Because of this, the two components of relative speed will be used as an
intermediate unknown. The two equilibrium equations and the two equations
de"ning the relative speed are regrouped into a four-equation system.

The next two equations de"ne the speed vector value. For convenience, they are
multiplied by the density o:

ov
r
"o (uR

r
#Xu@

r
!Xuh) , (19)

ovh"o (uR h#Xu@h#Xu
r
) .

Then, v
r
and vh are replaced by their values in the expression of the kinetic energy

¹. The Lagrangian density l is derived, equilibrium equations are obtained for
a stationary point of the Lagrangian ¸:

l (u
r
, u@

r
, u@@

r
, uR

r
, uh, u@h, uR h)"¹(u

r
, u@

r
, uR

r
, uh, u@h, uR h)![;

e
#;

s
#;

tp
#<] ,

¸"P P
n

l (u
r
, u@

r
, u@@

r
, uR

r
, uh, u@h, uR h) a dhdt . (20)
t ~n
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The derivative with respect to u
r
gives the "rst equilibrium equation. Substituting

on the left-side the expression of acceleration and on the right-hand side the terms
of internal and external forces, one has:

Ll
Lu

r

!A
Ll
Lu@

r
B
@
! A

Ll
LuR

r
B

def0

#A
Ll

Lu@@
r
B
@@
"0,

(21)

o (vR
r
#Xv@

r
!Xvh )#(oR #Xo@)v

r
"

1
a2

(Dsh)@@!
1
a

Keh!
1
a

t
i
c@
z
!(k

r
#w

r
)u

r
#q

r
.

The derivative with respect to uh gives the second equilibrium equation:

Ll
Luh

!A
Ll

Lu@hB
@
!A

Ll
LuR h B

def0

"0,

(22)

o (vR h#Xv@h#Xv
r
)#(oR #Xo@)vh"

1
a2

(Dsh)@#
1
a

(Keh)@!
1
a

t
i
c
z
!(kh#wh)uh#qh .

In equations (21, 22), the terms in (oR #Xo@) are zero because o is a constant. The
system is then

!

1
a2

(Dsh)@@#
1
a

Keh#
1
a

t
i
c@
z
#(k

r
#w

r
)u

r
#o (vR

r
#Xv@

r
!Xvh)"q

r
,

!

1
a2

(Dsh)@!
1
a

(Keh)@#
1
a

t
i
c
z
#(kh#wh)uh#o (vR h#Xv@h#Xv

r
)"qh ,

(23)
!o (uR

r
#Xu@

r
!Xuh)#ov

r
"0,

!o (uR h#Xu@h#Xu
r
)#ovh"0.

In this system o, D, K are constants. Later, a dependence in h and t will be
introduced.

Note that the form of the equations is also valid for heterogeneous mechanical
properties. The terms in (oR #Xo@) is always zero. The physical reason is just the
mass conservation that leads to

oR #Xo@"0. (24)

3. THE APPRO XIMATE EFFECT OF THE TREAD PATTERN

In this section, it is assumed that the tyre can be considered at "rst sight as
smooth. A "rst approximation of the solution is calculated with this hypothesis,
using the modal decomposition in a smooth tyre.
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Then, a small heterogeneity is taken into account. When the approximate
solution is introduced in the model with heterogeneity, it is shown that it is not in
equilibrium. A correction that partially takes into account these disequilibrium
forces is calculated.

3.1. MODAL DECOMPOSITION FOR A SMOOTH ROLLING TYRE

Recall "rst the modal decomposition method for a smooth rolling tyre. The
method presented here is a direct formulation, di!erent from the impedance
method. It will be used in the next section in the calculation of the "rst
approximation.

3.1.1. ¹he natural frequencies

For a "xed value u of the pulsation, it is possible to "nd a solution
u
r
(t, h)"u

r
(u, h) exp (iut) (and the same form for uh, v

r
, vh). Introducing this

form in equilibrium equations (23) without the source term, after simpli"cation
by exp (iut) and rearrangement, equation (23) leads to the following
system:

!

1
a2

(Dsh)@@#
1
a

Keh#
1
a

t
i
c@
z
#(k

r
#w

r
)u

r
#Xo (v@

r
!vh)"iu (!o)v

r
,

!

1
a2

(Dsh)@!
1
a

(Keh)@#
1
a

t
i
c
z
#(kh#wh)uh#Xo (v@h#v

r
)"iu (!o)vh ,

!Xo (u@
r
!uh)#ov

r
"iuou

r
,

!Xo (u@h#u
r
)#ovh"iuouh . (25)

Note that s(u, h) is the state vector "eld. It has four components that are periodic
functions in polar angle h:

s(u, h)"(u
r
(h), uh(h), v

r
(h), vh(h))T . (26)

The problem to be solved has the following structure:

bSsT"iu m ) s . (27)
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b(h) is a (4]4) matrix of linear di!erential operators in polar angle with constant
coe$cients:

b"A
1
a4

D
L4

Lh4
!

1
a2

t
i

L2

Lh2
#

1
a2

K#k
r
#w

r

1
a4

D
L3

Lh3
!

1
a2

(t
i
#K)

L
Lh

!Xo
L
Lh

!Xo

!

1
a4

D
L3

Lh3
#

1
a2

(t
i
#K)

L
Lh

Xo
L
Lh

!Xo

!

1
a2 AK#

1
a2

DB
L2

Lh2
#

1
a2

t
i
#kh#wh Xo Xo

L
Lh

Xo o 0

!Xo
L
Lh

0 o B (28)

m is a (4]4) constant, antisymmetric matrix:

m"A
0 0 !o 0

0 0 0 !o

o 0 0 0

0 o 0 0 B . (29)

Now examine the weak formulation of the diagonalization problem. Four
functions du

r
, duh, dv

r
, dvh of [!n, n], periodic in h are chosen, and these four

components are grouped in the vector ds. Note that ds is the complex conjugate of
the vector ds, and ds* the transposed vector of the complex conjugate of ds.
ds*"dM sT is also called the adjoint vector. Multiplying the "rst equation by du

r
, the

second by duh, the third by dv
r
and the fourth by dvh, integrating on [!n, n], and

adding all the equations, equation (27) become

P
n

~n
ds* ) bSsTdh"iu P

n

~n
ds* )m ) sdh . (30)

The symmetry properties of the operator bS.T are obtained when ds is exchanged
with s, and simultaneously, the conjugate of t he sesqui-linear forms is taken. Set the
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elastic form

; (ds, s)"P
n

~n
du

rA!
1
a2

(Dsh)@@#
1
a

Keh#
1
a

t
i
c@
z
#(k

r
#w

r
)u

rBdh

(31)

#P
n

~n
duhA!

1
a2

(Dsh)@!
1
a

(Keh)@#
1
a

t
i
c
z
#(kh#wh)uhBdh .

Making the usual integration by parts, and using the periodicity properties one has

;(ds, s)"P
n

~n
(dshDsh#dehKeh#dc

z
t
i
c
z
#du

r
(k

r
#w

r
)u

r
#duh (kh#wh)uh) dh .

(32)
Set the gyroscopic form

G(ds, s)"XP
n

~n
o[du

r
. (v@

r
!vh)#duh . (v@h#v

r
)] dh

!XP
n

~n
o[dv

r
(u@

r
!uh )#dvh (u@h#u

r
)] dh . (33)

With integration by parts in angle in the second integral, the periodicity of all
functions, and the property of the linear mass o@"0, are obtains

G(ds, s)"XP
n

~n
o[du

r
) (v@

r
!vh)#duh ) (v@h#v

r
)] dh

#XP
n

~n
o[u

r
(dv@

r
!dvh)#uh (dv@h#dv

r
)] dh . (34)

Introducing these formulae, the following result is obtained:

P
n

~n
ds* ) bSsTdh"; (ds, s)#G (ds, s)#P

n

~n
(dv

r
ov

r
#dvhovh ) dh. (35)

With this expression, bS .T is obviously Hermitian.
By de"nition, matrix m is antisymmetric, and as a consequence, im is also

Hermitian.
The numerical solution of this problem with the "nite element method is the

codiagonalization of two Hermitian matrices. Mode shapes are complex vectors,
but it is possible to calculate separately the real and the imaginary parts of these
vectors. The method is presented in Geradin and Rixen [15, pp. 76}81]. The natural
frequencies and mode shapes depend on the rolling speed X because of gyroscopic
forces in bS )T.
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For the discretized system with N degrees of freedom, the state vector has 2N
degrees of freedom. Operators bS .T and m are (2N]2N) matrices, and problem
(27) has in general 2N real solutions. These solutions can be separated into two lists
of opposite values: taking the conjugate of equation (27), it is found that

bSs6 T"!ium ) s6 . (36)

This means that if u is a natural frequency and s is its modal shape function, modal
shape function s6 has a natural frequency !u. Note that u1, u2,2, uN are
positives pulsations. This set, and the set of opposite values are equivalent to
N natural frequencies.

For tyres, the damping is important, and the introduction of damping is
presented in the Appendices.

3.1.2. ¹he projection theorem

For two vector functions associated with two di!erent natural frequencies
uiOuj, a projection formula is found. Starting from the de"nition

bSsiT"iui m ) si ,
(37)

bSsjT"iuj m ) sj ,

and using the Hermitian property, it is found that

P
n

~n
s*i ) bSsjTdh"iui P

n

~n
s*i )m ) sj dh,

P
n

~n
s*i ) bSsjTdh"iuj P

n

~n
s*i )m ) sjdh . (38)

The following property of projection holds:

P
n

~n
s*i )m ) sj dh"0. (39)

Remark that this projection theorem is not the same with damping. Its
expression in this case is derived in Appendix A.

3.1.3. ¹he solution construction

Coming back to problem (23) with excitation sources f,

f (u, h)"(q
r
(u, h), qh (u, h), 0, 0)T . (40)
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Suppose that the natural frequencies ui are known, and the associated periodic
functions si (h) are a basis of functions ([!n, n])4. The solution is decomposed in
this basis:

s(u, h)"
=
+

i/~=

a
i
(u) si (h) . (41)

Using property (27) of mode shapes, the equation to be solved becomes

=
+

i/~=

iuia
i
(u)m ) si"

=
+

i/~=

iua
i
(u)m ) si#f (u) . (42)

This equation is solved with the multiplication by s*j and integration on [!n, n].
Using property (39), and setting at "rst

e
j
(u)"

P
n

~n
s*j ) f (u) dh

P
n

~n
s*j )m ) sj dh

, (43)

the solution is given by the scalar equation

i (uj!u)a
j
"e

j
. (44)

Finally, the solution of the vibration problem is given by

A
u
r
(t, h)

uh (t, h)

v
r
(t, h)

vh (t, h) B" =
+

j/~=

1
2n P

=

~=

e
j
(u) exp (iut )
i (uj!u )

dusj (h) . (45)

3.2. PERTURBATION BY THE TREAD PATTERN

In previous publications, the density of the belt o had a uniform value. In this
work, the belt is considered heterogeneous, and because of the rolling movement,
o is a function of b"h!Xt, the position of the particle at t"0.

The beam sti!ness K and the bending sti!ness D are also functions of b, although
we consider that this heterogeneity is less important than the density heterogeneity.

Finally, the two sti!nesses w
r

and wh are functions of b, and represent the
elasticity of the rubber blocks. They are very small where the tread has a groove.

In equations (23), the mechanical characteristics are ¹-periodic. The period ¹ is
determined by the rolling speed and the tread pattern periodicity. If the tread
pattern is m repetitions of a motif sequence, and if X is the angular speed of the
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wheel in rad/s, then
¹"2n/Xm , (46)

where Xm is also the fundamental pulsation of tread pattern impact on the road
and is denoted by XI in the following.

Equations (23) for a source term at pulsation u are studied:

b (t, h)SsT!m(t, h) )
Ls
Lt
"f (u, h) exp (iut) . (47)

A discrete Fourier transform in time is performed for b and m:

b (t, h)"+
q

b
q
(h) exp (iqXI t),

(48)

m(t, h)"+
q

m
q
(h) exp (iqXI t) .

The equation is written again as

+
q

exp (iqXI t) b
q
(h)SsT!+

q

exp (iqXI t)m
q
(h) )

Ls
Lt
"f (u, h) exp (iut) . (49)

The vibration decomposition into mode shapes obtained in the previous section
is used for solving equations (49) when b and m are disturbed by a small periodic
oscillation caused by the tread heterogeneity.

3.2.1. ¹he order 0

It is "rst assumed that the contribution of all the b
q

and m
q
, qO0 can be

neglected in equation (49): only the time average of operators b
0

and m
0

are taken
into account. Suppose that mode shapes and natural pulsations of the following
problem have been computed with the theory of smooth tyre vibrations presented
in the previous section:

b
0
SsiT"iuim

0
) si (50)

These vectors are a basis and the solution can be decomposed in this basis:

s(t, h)"s
0
(h) exp (iut)"+

i

a
i
si (h) exp (iut) . (51)

This decomposition is introduced in equation (49), where only averaged
contribution is modelled. Using the projection on the mode shapes, the solution at
order 0 is simply

s(t, h)"s
0
(h) exp (iut)"+

e
i

i(ui!u)
si (h) exp (iut) . (52)
i
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3.2.2. Order 1

Operators b (t, h) and m (t, h) are split into a time average and a perturbation
considered of the "rst order (small comparative to the average):

b (t, h)"b
0
(h)# +

qO0

exp (iqXI t)b
q
(h) ,

m(t, h)"m
0
(h)# +

qO0

exp(iqXI t)m
q
(h) . (53)

The solution is also split into the preceding solution at order 0 and a correction
of "rst order:

s (t, h)"s
0
(h) exp (iut)#s

1
(t, h). (54)

Then the solution at order 1 is inserted again into equations:

Ab0# +
qO0

exp(iqXI t) b
qB Ss

0
(h) exp (iut)#s

1
(t, h)T

(55)

!Am0
# +

qO0

exp (iqXI t) m
qB ) Aius

0
exp(iut)#

Ls
1

Lt B"f (u, h) exp (iut) .

Neglecting the terms of second order in equilibrium equations (product of two
terms considered of "rst order), the correction is the solution of the problem

b
0
Ss

1
T!m

0
)
Ls

1
Lt

" +
qO0

exp iAut#qXI tBAium
q
) s

0
!b

q
Ss

0
TB . (56)

The function s
1
(t, h) is decomposed into frequency components:

s
1
(t, h)" +

qO0

s
1
(q, h) exp i (ut#qXI t). (57)

Each frequency component veri"es the equation

b
0
Ss

1
(q, h)T!i (u#qXI ) m

0
) s

1
(q, h)"ium

q
) s

0
!b

q
Ss

0
T (58)

The equation is solved by projection on the modal basis:

s
1
(q, h)"+

i

b
i
(q) si (h) . (59)
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Using this decomposition, it is "nally found that

b
i
(q)"

1
i (ui!u!qXI )

P
n

~n
(ius*i )m

q
) s

0
!s*i ) b

q
Ss

0
T) dh

P
n

~n
s*i )m ) si dh

. (60)

Now write the solution up to "rst order for a force at frequency u:

s(t, h)"+
i

exp (iut) a
i
si (h)# +

qO0

exp(i(u#qXI ) t) +
i

b
i
(q) si (h) . (61)

The response contains component a
i

at pulsation u given by the theory of
smooth tyres which is caused by external forces at frequency u. The response also
contains other components b

i
(q) at pulsations (u#qXI ), qO0, given by the

perturbation theory. Terms b
i
(q) are caused by &&self-excitation forces''. They

are a consequence of the disequilibrium of the approximation of order 0 when
heterogeneity is taken into account. The e!ect of the rotation of the groove is to
give forces whose pulsation is the one of the order 0 translated by qXI . This means
that the modal analysis, that assumes that the response contains only the frequency
u, is not applicable to analyze a rolling tyre.

Rewriting the solution

s(t, h)"exp (iut)+
i
Aai# +

q/0

exp (iqXI t )b
i
(q)B si (h), (62)

it is shown that it is the product of an oscillating function by a function of t and h,
¹-periodic in t and 2n-periodic in h. This decomposition will be used again later.

3.3. ROLLING NOISE SPECTRUM

Now consider that tread heterogeneity also contributes partially to a #at
spectrum of tyre noise, which will be explained with the physical meaning of
equation (61).

Suppose that the natural frequencies of smooth tyres were calculated for rolling
and non-rolling tyres. Now try to apply qualitatively these results to commercial
tyres. In the preceding publications, damped resonances are measured for
non-rolling commercial tyres, at least up to 400 Hz. At high frequencies (above
800 Hz), these resonances are not measurable; it is usually explained by a high
damping of vibrations caused by the viscosity of rubber. The theory of smooth tyres
seems to give a good agreement in the case of non-rolling tyres. But the theory of
smooth tyre does not apply for rolling tyres; damped resonance was not visible on
rolling noise spectra of tyres with a tread pattern even at low frequency. For tyres
with a randomized tread pattern, the noise spectrum appears #at.



Figure 2. Change of natural frequencies caused by rolling speed.

Figure 3. The tread pattern e!ect (periodic tread pattern).
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Now examine the physical meaning of equation (61). As a "rst approximation,
the tyre can be considered to be smooth: ampli"cations occurs if the excitation
frequency u is near a natural pulsation of the smooth tyre ui. In this case,
the solution at order 0, exp (iuit) s

0
(ui, h), is of greater amplitude. Then, the

perturbation induced by the heterogeneity is proportional to the order 0 solution.
This perturbation reproduces the ampli"cations at frequencies ui at the other
pulsations (ui#qXI ).

Now illustrate this with the simpli"ed case where the solution at order 0 contains
only one excited mode, a

0
. Figure 2 shows the modal amplitude of mode 0 obtained

with the smooth tyre theory. The plain and dashed lines show result for two
di!erent rolling speeds. As mentioned before, u0, the natural frequency of this mode
changes when the rolling speed increases. In Figures 3 and 4, the tread pattern is
taken into account. Modal amplitude of the "rst mode shows a centre peak
that correspond to natural frequency u0, and other peaks that correspond to
frequencies (u0#qXI ). If the fundamental frequency of the tread pattern impact XI is
high (for example for tyres with a periodic pattern, and rolled at high speed), the



Figure 4. The tread pattern e!ect (randomized tread pattern).
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frequencies (u0#qXI ) are well separated, and the contributions of the terms
b
0
(q) do not overlap the contribution a

0
(see Figure 3). On the contrary, if the

fundamental frequencies is small (for example for tyres with randomized tread
pattern), the frequencies (u0#qXI ) are close to each other and overlap (see Figure
4). The spectrum of rolling noise appears #at.

4. THE THEORETICAL SOLUTION

The perturbation theory presented above is approximate. In the following, the
extension of these results to the general case is investigated. The e!ect of tread
pattern on tyre vibrations is developed for the heterogeneous &&circular ring model''.
This will present the global theoretical frame of the study and will lead to
a proposal for the experimental characterization of the tyre rolling noise.

The e!ective numerical analysis is then developed in Section 5.

4.1. THE METHOD

In the previous section, it was seen that if the tyre is modelled by a time periodic
system, then all the frequencies u

q
"(u#qXI ), q the relative integer, are mixed by

the system.
For a "xed value of u, the following excitation contains all the frequencies u

q
:

=
+

q/~=

qL
r
(u

q
, h) exp(iu

q
t)"exp (iut)

=
+

q/~=

qL
r
(u#qXI , h) exp (iqXI t)

"exp (iut)q
r
(u, t, h) , (63)

where q
r
(u, t, h) is ¹-periodic in t for all values of u. The same decomposition is

done for qh (t, h).
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It is possible to look for the solution u
r
(t, h)"exp (iut)u

r
(u, t, h) with u

r
(u, t, h)

¹-periodic (and the same form for uh, vr, vh), that is, the same set of frequencies as the
excitation.

4.1.1. ¹he diagonalization problem

Introducing these forms to the equilibrium equations (23), simpli"ng by exp (iut)
and rearranging, yields the following system where all functions are periodic in
t and in h:

!

1
a2

(Dsh)A#
1
a

Keh#
1
a

t
i
c@
z
#(k

r
#w

r
(b))u

r
#o(b) (vR

r
#Xv@

r
!Xvh)

hggggggggiggggggggj hgggigggj
stress gyroscopic

"!iuo (b)v
r
#q

r
, (64)

!

1
a2

(Dsh)@!
1
a

(Keh)@#
1
a

t
i
c
z
#(kh#wh(b))uh#o (b)(vR h#Xv@h#Xv

r
)

hggggggggigggggggggj hgggigggj
stress gyroscopic

"!iu o (b)vh#qh , (65)

!o(b) (uR
r
#Xu@

r
!Xuh)#o (b)v

r
"iu o (b)u

r
(66)

hggggigggj hij
gyroscopic impulsion

!o (b)(uR h#Xu@h#Xu
r
)#o (b)vh "iuo(b)uh . (67)

hggggigggj hij
gyroscopic impulsion

The problem to be solved has the following structure:

bSsT"iu m ) s#f (68)

where b(b) is a (4]4) matrix of linear di!erential operators both in time and polar
angle with time periodic coe$cients, and m (b) is a matrix with time periodic
components. f is the source term of the equations

f (u, t, h)"(q
r
, qh, 0, 0)T . (69)

The associated diagonalization problem for the function of ([0, ¹]][!n, n])4,
periodic in h and periodic in t is found to be

bSsT"iu m ) s . (70)
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Four functions du
r
, duh, dv

r
, dvh of [0, ¹]][!n, n], periodic in h and periodic in

t are chosen, and the four component vector is denoted by ds. Multiplying each
equation by the conjugate of a component of ds, integrating on [0, ¹]][!n, n],
and adding all the equations, produces the weak formulation:

P
T

0
P

n

~n
ds* ) bSsTdhdt"iu P

T

0
P

n

~n
ds* )m ) sdhdt . (71)

It can be shown that both the form bS.T and the matrix im are Hermitian.
The stress terms of equations (64, 65) lead to the integral of elastic form, also

a symmetric term. With the same notations as in the previous section for ;, it is
found that

P
T

0
P

n

~n C!
1
a2

(Dsh)@@#
1
a

Keh#
1
a

t
i
c@
z
#(k

r
#w

r
(b))u

rD du
r
dhdt

#P
n

~n C!
1
a2

(Dsh)@!
1
a

(Keh)@#
1
a

t
i
c
z
#(kh#wh(b))uh] duh dhdt (72)

"P
T

0

;(ds, s) dt .

The impulsion terms of equations (66, 67) lead to the integral of kinetic form, also
a symmetric term,

P
T

0
P

n

~n
(dv

r
ov

r
#dvhovh) dh dt . (73)

The gyroscopic terms in equation (66, 65) are integrated by parts, either in angle,
or in time. Using the periodicity properties of all the functions, and the property of
the linear mass oR #Xo@"0, it is "rstly found that

!P
T

0
P

n

~n
o [dv

r
(uR

r
#Xu@

r
!Xuh)#dvh (uR h#Xu@h#Xu

r
)] dhdt

"P
T

0
P

n

~n
o[u

r
(dvR

r
#Xdv@

r
!Xdvh )#uh(dQ vh#Xdv@h#Xdv

r
)] dhdt . (74)

Then, the gyroscopic terms of equations (64, 65), are added, and a symmetric
form is also obtained. With the same notations as in the last section for G, it is
found that:

P
T

0
P

n

~n
o[du

r
(vR

r
#Xv@

r
!Xvh)#duh (vR h#Xv@h#Xv

r
)] dh dt
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!P
T

0
P

n

~n
o[dv

r
(uR

r
#Xu@

r
!Xuh )#dvh (uR h#Xu@h#Xu

r
)] dh dt

"P
T

0

G (ds, s) dt#P
T

0
P

n

~n
o[du

r
vR
r
#duhvR h#u

r
dQ v

r
#uhdQ vh] dhdt (75)

Finally, equation (76) shows that the operator bS.T is Hermitian:

P
T

0
P

n

~n
ds* ) bSsTdhdt"P

T

0

; (ds, s) dt#P
T

0
P

n

~n
(dv

r
ov

r
#dvhovh ) dhdt

#P
T

0

G (ds, s) dt#P
T

0
P

n

~n
o[du

r
vR
r
#duhvR h#u

r
dQ v

r
#uhdQ vh] dhdt . (76)

Matrix m is antisymmetric and therefore im is also Hermitian.
As a consequence, for two sets of functions associated with two di!erent values

uiOuj, it is found that the following property holds:

P
T

0
P

n

~n
s*j )m ) si dhdt"0. (77)

4.1.2. ¹he solution construction

Returning to problem (68), suppose that ui are known, and associated periodic
functions si are a basis of the functions ([0, ¹]][!n, n])4. The solution is
decomposed on this basis:

s (u, t, h)"
=
+

i/~=

a
i
(u) si(t, h). (78)

Using the property of functions si , the equation to be solved becomes

=
+

i/~=

iuia
i
m ) si"

=
+

i/~=

iua
i
m ) si#f . (79)

This equation is solved with the multiplication by s*j and integration on
[0, ¹]][!n, n]. Using the property (77), and setting "rstly:

e
j
"

P
T

0
P

n

~n
s*j ) fdh dt

P
T

0
P

n

~n
s*j )m ) sjdhdt

, (80)

the solution is given by the reduced equation

i(uj!u)a
j
"e

j
. (81)
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Then, the solution of the diagonalization problem with a source term is

s (u, t, h)"
=
+

i/~=

e
i

i (ui!u)
si (t, h). (82)

Finally, the solution of the vibration problem is given by

A
u
r
(t, h)

uh (t, h)

v
r
(t, h)

vh (t, h) B"P
XI /2

!XI /2

=
+

i/~=

e
i
exp(iut)

i(ui!u)
si (t, h) du . (83)

This theoretical formula gives the vibration decomposition. The values of ui are
real numbers when the dissipation is not taken into account, but for real tyres,
ui should have an imaginary part that models the damping.

4.2. EXPERIMENTAL ANALYSIS OF THE ROLLING NOISE SPECTRUM

The above analysis suggests the use of a representation di!erent from the
spectrum for the experimental study of the sound radiated by a rolling tyre.
Suppose that the signal p (t) is measured at one point with a microphone. Because
all the frequencies (u#qXI ) are mixed by the system, the following function p (u, t )
should be represented. For any time t in [0, ¹] and any phase u in [!XI /2, XI /2],
its value is given by

p (t, u)" lim
N?=

1
2N#1

N
+

n/~N

p(t#n¹) exp (!iun¹)

"exp (iut) lim
N?=

1
2N#1

N
+

n/~N

p (t#n¹) exp (!iu (t#n¹)) . (84)

Note that the component p (t, 0) is the periodic component of the noise of a rolling
tyre, and has already been widely used by Walker [16] in rolling noise analysis.

By linearity, it is the solution of equations (23) with excitation forces:

q (t, u, h)" lim
N?=

1
2N#1

N
+

n/~N

q (t#n¹, h) exp (!iun¹)

"exp (iut) lim
N?=

1
2N#1

N
+

n/~N

q(t#n¹, h) exp (!iu(t#n¹)). (85)

The function p (t, u) is the product of exp (iut) by a periodic function of time. Its
value is then calculable with the Bloch wave theory. Suppose then that after signal
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processing, the value of p (t, u) is known. From this value, it will be shown that it is
possible to measure the numbers ui of a rolling tyre.

Like the frequency representation of the spectrum that allows for the
identi"cation of natural frequencies in experiments, the Bloch wave presentation of
experimental or numerical data makes the dynamics of a rolling tyre easy to
understand. This representation is a 3-D diagram of the acoustic pressure p as
a function of time and phase angle. In the decomposition (83), it is shown that an
ampli"cation of the vibrations occurs if u is near a value ui ; phase angles ui are
observed by peaks on the u-axis.

Note that when the tyre is rolling on a #at surface, it is seen that the excitation
source is the tread pattern excitation, having a discrete spectrum containing all
pulsations qXI . It means that only q(t, 0, h) is non-zero. This excitation source is
then ampli"ed if many values of ui near 0 exist (and if the associated vibrations are
not very damped, or if they can radiate sound).

5. THE NUMERICAL COMPUTATION

In the case of a mechanical mode discretized into a great number of degrees of
freedom, the calculation of the numbers ui and the periodic functions with Bloch
theory can be of very high computational cost, especially if the period ¹ is long
(randomized tread pattern). For numerical simulation, it is preferable to use the
Floquet theory.

5.1. THE DIAGONALIZATION PROBLEM

Now examine the relation between Bloch wave theory and Floquet theory.
Remember that by de"nition, with a phase ui and a Bloch mode shapes
si (t, h)"(ui

r
, uih, vir, vih )T ¹-periodic in time, it is possible to construct a solution of

free propagation in the system:

li (t, h)"exp (iuit) si (t, h) . (86)

This solution satis"es the following important properties:

li (¹, h)"exp (iui¹) li (0, h) ,

li (0, h)"si (0, h). (87)

Denote by P[ ], the linear operator that integrates the propagation equations
without excitation source. Knowing an initial value of Cauchy type at time t"0,
l(0, h), P[ ] gives the solution at time ¹ as a linear form of the initial condition:

l (¹, h)"P[l (0, h)] . (88)
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The above analysis suggests one to calculate and diagonalize P: a method for the
calculation and the diagonalization of P is proposed in Appendix C. Suppose that
functions li

0
(h) and Floquet coe$cients ji are known:

P[li
0
(h)]"jili

0
(h). (89)

The value at time 0 of the Bloch shape functions veri"es the eigenvalue problem
(89): li

0
(h)"si (0, h) is the solution of the diagonalization problem (89) with

eigenvalue ji"exp (iui¹).
Reciprocally, it is possible to de"ne the solution of the free propagation problem

with initial value li
0
(h): li (0, h)"li

0
(h). Setting si (t, h)"exp (!iuit) li (t, h), function

si (t, h) is ¹-periodic, and is the solution of the diagonalization problem (70).
It has been shown that both sets of functions si (t, h) and li

0
(h) are equivalent, and

the following relationship holds:

li
0
(h)"si (0, h). (90)

Numbers ji"exp (iui¹) are called the Floquet coe$cients. The knowledge of
both these numbers, and the values of the Floquet shapes li

0
(h) for a given t is

equivalent to the Bloch wave analysis. The phase of ji is the change of phase of the
solution of free propagation in one period ¹, its modulus being the ampli"cation.
As we have dissipative problem, the modulus is lower than one.

5.2. THE STATIONARY CONDITION

When a time integration algorithm is used, a Cauchy type initial condition is
needed. In the case of stationary rolling, this initial condition is not known. It will
be replaced by a relation between initial state and state at time ¹. Now derive this
relation called stationary condition.

Suppose an excitation at pulsation u"(u#q
0
XI ), u and q

0
"xed, and compare

the state vector "eld in the tyre between two instants separated by one period ¹. It
has been shown in section 4 that the response contains all the frequencies
u

q
"(u#qXI ), q relative integer. Using the frequency decomposition of the

solution for this excitation,

s(t, h)"
=
+

q/~=

s
q
(h) exp (i(u#qXI ) t), (91)

it is found that

s(t#¹, h)"
=
+

q/~=

s
q
(h) exp(i(u#qXI ) (t#¹)),

s(t#¹, h)"exp (iu¹)
=
+

q/~=

s
q
(h) exp (i(u#qXI ) t), (92)

s(t#¹, h)"exp (iu¹) s(t, h) .
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This condition is the de"nition for stationary state of vibrations induced by
excitation source at pulsation u. This condition is the same for any value of q

0
in

the expression of the frequency of excitation sources, (u#q
0
XI ).

5.3. THE DECOMPOSITION FORMULA

The equilibrium equations (23) are linear equations with a source term. The
solution is the sum of a solution of the equations with source term and a special
initial condition, and a combination of solutions of the equations without source
term. For the special initial condition, a zero displacement and a zero relative speed
are chosen. With this condition and a time integration algorithm, it is possible to
get the solution at time ¹, z(¹, h), of the equation system (23), with sources q

r
and

qh oscillating at pulsation in the set u
q
"(u#qXI ), u "xed and q relative integer.

The stationary condition must be satis"ed. Of course, the solution z has no
reason to verify this condition:

z (¹, h)Oexp(iu¹)z(0, h). (93)

For this reason, a combination of solutions of the equations without source term is
added to this particular solution. This combination is chosen as a combination of
the functions li (t, h), that verify the initial condition li (0, h)"li

0
(h), where li

0
(h) is

a solution of the diagonalization problem (89):

s(t, h)"z (t, h)#
I
+
i/1

a
i
(u) li(t, h). (94)

The numbers a
i

must be calculated to have the stationarity condition. The
stationarity condition is then derived for this expression:

s(0, h)"z (0, h)#
I
+
i/1

a
i
li (0, h)"

I
+
i/1

a
i
li
0
(h),

s(¹, h)"z (¹, h)#
I
+
i/1

a
i
li (¹, h)"z (¹, h)#

I
+
i/1

a
i
ji li

0
(h), (95)

I
+
i/1

a
i
(exp (iu¹)!ji ) li

0
(h)"z (¹, h) .

In order to solve this system, a projection formula is developed in Appendix B.
The result is that for iOj,

P
n

~n
l jT
0

(h) )m(¹, h) ) li
0
(h) dh"0. (96)
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Using this result, the expression of a
i
is found:

a
i
"

1
(exp (iu¹)!ji )

P
n

~n
liT
0

(h) )m (¹, h) ) z (¹, h) dh

P
n

~n
liT
0

(h) )m (¹, h) ) li
0
(h) dh

. (97)

The solution of this system gives the values of a
i
, and as a consequence, the value

at time t"0 of the solution of equations (23):

s (t, 0)"+
i

a
i
li
0
(h). (98)

The complete solution at other times t3]0, ¹[ is obtained by time integration of
this initial condition.

5.4. RETURN TO BLOCH WAVE ANALYSIS

Finally, it is also possible to "nd the value of ui and e
i
(u) de"ned in the Bloch

wave theory from ji and a
i
(u) calculated using the Floquet theory.

Firstly, the equation exp (iui¹)"ji has to be solved. It has only one solution
ui with an argument in ]!XI /2, XI /2].

Then, for a given u, it has been shown that the excitation spectrum contains all
the frequencies u

q
"(u#qXI ). In order to derive e

i
(u), all the values a

i
(u

q
) are

necessary. By linearity, they can be calculated at once, if the solution z
q
(t, h) is the

response of the structure to the excitation forces +
q
q
r
(u

q
, h) and +

q
qh (uq

, h).
Relation (97) can be used:

a
i
(u)"

1
(exp (iu¹)!ji)

P
n

~n
liT
0
(h) )m(¹, h) )+

q
z
q
(¹, h) dh

P
n

~n
liT
0
(h) )m (¹, h) ) li

0
(h) dh

. (99)

Comparing the expression at t"0 of the solution given using the Floquet theory
and the Bloch theory, it is found that

s (t, 0)"+
i

a
i
li
0
(h)"+

i

e
i

i (ui!u)
si (0, h) . (100)

Remembering that li
0
(h)"si (0, h), the value of e

i
is shown to be

e
i
"a

i
(iui!iu) . (101)

In consequence, it is possible to compare numerical simulations obtained by the
Floquet theory with measurements obtained by the signal processing derived from
the Bloch theory of section 4.2.
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6. CONCLUSION

After examination of the theories of vibrations in linear systems with time
periodic coe$cients, three main results were obtained for rolling tyres:

1. The e!ect of the tread pattern on rolling tyre vibrations was investigated. It
was shown that for randomized tyres, this e!ect makes the noise spectrum
appear #at, as measured in experiments (see Figure 4).

2. From an experimental point of view, the analysis of rolling tyre noise could be
easier to understand if the results of the spectrum are presented in a suitable
way to take into account the impact periodicity of the rubber blocks. It was
suggested in section 4 to plot the following pressure signal for the values of
u between 0 and the half of the fundamental pulsation of the rubber block
impact XI /2 and for the value of t between 0 and the period of rubber block
impact ¹:

p(u, t)" lim
N?=

1
2N#1

N
+

n/~N

p (t#n¹) exp (!iun¹ ) . (102)

This extends a result already used in reference [16] for tyre noise analysis.
3. From a computational point of view, calculation of vibrations of a smooth

tyre is not su$cient for the dynamical analysis of a rolling tyre with a tread
pattern.

f A self-excitation caused by the tread pattern has to be included for the study
of nearly smooth tyres (in section 3 and Appendix A).

f Modal analysis should be replaced by the Floquet analysis for tyre with
a winter type pattern. This analysis is explained in the case of the &&circular
ring model'' (in section 5 and in Appendices B and C).

It is considered that the extension to real structures of these methods is possible
with the "nite element method.
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APPENDIX A: COMPUTATION OF NATURAL FREQUENCIES
OF A SMOOTH TYRE

A.1. THE DISCRETIZATION OF THE PROBLEM

The problem to be solved is the following one (see section 3.1.1):

G
!

1
a2

(Dsh)@@#
1
a

Keh#
1
a

t
i
c@
z
#(k

r
#w

r
)u

r
#Xo(v@

r
!vh ) "iu (!o)v

r

!

1
a2

(Dsh)@!
1
a

(Keh)@#
1
a

t
i
c
z
#(kh#wh)uh #Xo (v@h#v

r
) " iu (!o)vh

!Xo (u{
r
!uh) #ov

r
" iuou

r

!Xo (u@h#u
r
) #ovh " iuouh

(A1)

In this section, a discrete formulation of the above problem is given. The
equations veri"ed by the discretized "eld vectors U(u) and V(u) that represent
the values of the displacement "eld u (u, h) and v(u, h) in "xed point h"hi are
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derived:

U(u)"A
u
r (u, h1 )

uh
2

u
r (u, hi)

uh
2

B , V(u)"A
v
r (u, h1 )

vh
2

v
r (u, hi )

vh
2

B . (A2)

Each component a("r, h) of the displacement "eld u(u, h) is approximated by
the nodal shape function Nia (h) by the formula

ua (u, h)"+
i

Nia (h)ua (u, hi) . (A3)

The nodal shape functions Nia (h) are continuous. They follow three conditions:

(1) Nia(hi)"1, (2) Nia(hj)"0 if iOj, and (3) the consistency condition.

A.1.1. Rigidity matrix

With the weak formulation of the problem, the elastic energy form has been
de"ned:

; (ds, s)"P
n

~n
(dshDsh#dehKeh#dc

z
t
i
c
z
#du

r
(k

r
#w

r
)u

r
#duh (kh#wh)uh) dh .

(A4)

Its discretized formulation is the rigidity matrix K.

A.1.2. Gyroscopic matrix

The gyroscopic form has also been introduced:

G(ds, s)"XP
n

~n
o[du

r
) (v@

r
!vh)#duh ) (v@h#v

r
)] dh

#XP
n

~n
o[u

r
(dv@

r
!dvh)#uh (dv@h#dv

r
)] dh. (A5)

The discretized formulation of the "rst integral is called XG, and the discretized
formulation of the second integral is simply XGT.



66 P. CAMPANAC E¹ A¸.
A.1.3. Mass matrix

The mass matrix M is de"ned as usual.

A.1.4. Damping matrix

If it is assumed that relaxation times are very short in comparison with a
characteristic time of the problem, then the Rayleigh model for damping can be
used:

r"(1!eh)pthA
!c

z
(1#eh )B"t

i
(eh!c

z
e
r
)#AKeh#l

Leh
Lt KbB eh . (A6)

This formulation has the big advantage of being &&instantaneous'' and then only the
actual position and speed are needed to predict the next time step. This behaviour
must be extended to the bending D, the tread sti!nesses w

r
and wh , and the sidewall

sti!nesses k
r
and kh . Damping is responsible for the new term:

C(ds, s)"P
n

~n
dehl

Leh
Lt Kb dh"P

n

~n
deh lA

Leh
Lt

#Xe@hBdh

"P
n

~n
deh l

Leh
Lt

dh#XP
n

~n
dehle@h dh . (A7)

Its discretized formulation leads to two matrices: the usual damping matrix C
(symmetric positive) and an antisymmetric matrix XK

c
.

A.1.5. Discretized problem

Equilibrium equations are written again with the viscous forces. With the
discretization introduced, the natural frequency equation becomes

A
(K#XK

c
)

XGT

XG
M B )A

U
VB"iuA

!C
M

!M
0 B )A

U
VB . (A8)

Denote by B
c
the left side matrix and A

c
the right side matrix. Because they are

not symmetric anymore, the natural frequencies u are now complex numbers.

A.2. PROJECTION FORMULAE WITH DAMPING

For the computation of the natural frequencies with damping and the mode
shapes, it is possible to use the natural frequencies without damping as a starting
value and to obtain the value of the natural frequencies ui with damping and the
value of the modal shape vector Si with damping by inverse iteration (see reference
[17]).
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The aim of this section is to develop the projection theorem of the force vector in
order to get the solution.

Recall two classical results:

1. If ui is a natural frequency (complex) of equation (A8), then !ui is a natural
frequency of the adjoint problem.

Note that DB
c
!iuiA

c
D is the determinant of the matrix (B

c
!iuiA

c
).

Suppose that ui is a natural frequency; then by de"nition

DB
c
!iuiA

c
D"0 . (A9)

By transposition and conjugation, it is found that

DB*
c
#iuiA*

c
D"0. (A10)

2. Suppose now that the mode shapes of the following system dSi are known:

B*
c
) dSi"!iuiA*

c
) dSi , (A11)

The projection theorem is

uiOujNdSi* )A
c
) Sj"0. (A12)

To see this, choose Sj that veri"es

B
c
)Sj"iujA

c
) Sj . (A13)

Multipling by dSi ,

dSi* )B
c
)Sj"iujdSi* )A

c
) Sj . (A14)

Transpose and conjugate:

Sj* )B*
c
) dSi"!iujSj* )A*

c
) dSi . (A15)

By using the de"nition of dSi ,

B*
c
) dSi"!iuiA*

c
) Si . (A16)

It is found that

!iuiSj* )A*
c
) dSi"!iujS j* )A*

c
) dSi . (A17)
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This proves the result.
Coming back to the initial problem:

B
c
) S!iuA

c
)S"F , (A18)

where F is the discretized vector representing the q
r
(u, h) and qh (u, h).

Suppose S"+
i
a
i
Si ; then by the projection theorem, it is found that

a
i
"

e
i

i (ui!u)
, (A19)

where, e
i
, the projection of F on Si is given by the formula

e
i
"

dSi* )F
dSi* )A

c
) Si

. (A20)

A.3. THE MODE SHAPES OF THE ADJOINT PROBLEM

In the above section, the mode shapes of the adjoint problem were assumed to be
known. Giving a physical interpretation of these functions allows to construct them
from the mode shapes of the direct problem. Rewrite B*

c
) dSi"!iuiA*

c
) dSi:

A
(K!XK

c
)

XGT

XG
M B )A

dU
dVB"!iuN A

!C
!M

M
0 B A

dU
dVB . (A21)

Changing dV to !dV gives

A
(K!XK

c
)

XGT

!XG
!M B A

dU
!dVB"!iuN A

!C
!M

!M
0 B A

dU
!dVB . (A22)

Multiplying the lower line by !1 gives

A
(K!XK

c
)

!XGT

!XG
M B A

dU
!dVB"!iuN A

!C
M

!M
0 B A

dU
!dVB . (A23)

It means that functions dsi (h) can be obtained from the mode shapes of the
reverse rotation problem, that is, the initial problem where X is changed in !X.
These functions are already known. From a mode shape of the direct problem,
s~i(h), with natural frequency !ui, the following function is a mode shape of the
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reverse rotation problem:

u(h)"u~i
r

(n!h)e
r
(h)!u~ih (n!h)eh(h) ,

(A24)
v(h)"v~i

r
(n!h)e

r
(h)!v~ih (n!h)eh(h).

The physical reason is explained in Figure A1. When an observer O
1

is looking at
the tyre from the outside of the car, he sees a belt turning at rolling speed X. When
an observer O

2
is looking at the same tyre from the inside of the car, he sees a belt

turning at rolling speed !X. For the second observer, X is changed to !X, h to
n!h and eh is changed to !eh . Of course, even if the description of the problem by
the two observers are di!erent, the dynamics of the problem is the same.

Finally, the mode shapes of the adjoint problem are obtained from the mode
shapes of the reverse rotation problem when the relative speed is changed into its
opposite. The modal shape function dsi of the adjoint problem, associated with the
natural pulsation !ui, is obtained from the modal shape function of the direct
problem s~i as follows:

dsi (h)"A
u~i
r

(n!h)

!u~ih (n!h)

!v~i
r

(n!h)

v~ih (n!h) B . (A25)

Although this result can be proved with the equations of the &&circular ring
model'', the reasoning with the two observers is independent of the model. It means
that the above property is general and is not a special case for this model of rolling
tyres.
Figure A1. The reverse rotation speed problem.
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Recall that equations of the adjoint problem are the same as equations of direct
problem when there is no damping.

APPENDIX B: THE PROJECTION THEOREM IN THE FLOQUET THEORY

The solutions of equilibrium equations without source term are investigated. The
following system is considered
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r
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(B1)

where b"(h!Xt). Moreover, damping is added as in Appendix A.
For simpli"cations in notations, discretized formulation is used. Recall that the

de"nition of the discretized state vector is

L(t)"A
U(t)
V(t)B (B2)

Recall also the two matrices

B
c
(t)"A

(K(t)#XK
c
)

!XG(t)
XG(t)
M(t) B (B3)

and

A
c
(t)"A

!C
M(t)

!M(t)
0 B . (B4)

B.1. CONSERVATION OF THE POISSON BRACKET

Suppose a solution of propagation equations without sources is known for
t3[0, ¹]:

B
c
(t) )L"A

c
(t) )L0 . (B5)

The initial state vector at t"0 is arbitrary.
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A discretized state vector dL(t) for t3[0, ¹] is chosen. Multiplying the system by
the conjugate of this vector and integrating on [0, ¹], one obtains

P
T

0

(dL* )B
c
)L!dL* )A

c
)L0 ) dt"0. (B6)

where dL*"dLT

By transposing and conjugating this equation, are obtains

P
T

0
AL* )B*

c
) dL!L0 * )A*

c
) dLBdt"0. (B7)

Integrating by parts in time in the second term of the equation, one has

P
T

0

(L* )B*
c
) dL#L* )A*

c
) dL

def0
) dt"L* (¹) )A*

c
(¹) ) dL (¹)!L* (0) )A*

c
(0) ) dL(0).

(B8)

Suppose now that dL(t) is chosen in order to have

B*
c
) dL"!A*

c
) dL

def0
(B9)

then, the following property holds:

L*(¹) )A*
c
(¹) ) dL (¹)"L* (0) )A*

c
(0) ) dL(0) . (B10)

By transposing and conjugating this equation, one obtains the conservation of
Poisson's bracket:

dL* (¹) )A
c
(¹) )L(¹)"dL* (0) )A

c
(0) )L(0). (B11)

B.2. THE ADJOINT PROPAGATION OPERATOR IN FLOQUET THEORY

The function dL (t) was assumed to follow the equation

B*
c
) dL"!A*

c
) dL

def0
. (B12)

As in Appendix A, it will be shown that this equation is related to the reverse
rotation problem. Express the value of the above expressions:

B*
c
) dL"A

(K!XK
c
)

XG*(t)
!XG*(t)

M(t ) B A
dU
dV B (B13)
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and

!A*
c
) dL

def0
"!A
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!M(t)

M (t )
0 B )A

dU0
dV0 B!A

0
!M0 (t)
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0 BA

dU
dVB ) (B14)

Calculate now the value of the non-diagonal terms XG* (t)!M0 (t). Using the
notation introduced in Appendix A, these terms are
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Reordering in Nj
r
and Njh, these terms becomes
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Integrating by parts in h, these terms become:
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Remembering the equation of conservation of the mass oR #Xo@"0, it is found that
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that is

XG*(t)!M0 (t)"!XG(t) . (B19)
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Taking this into account, it is found that the vector dL follows

A
(K(t)!XK

c
)

!XG(t)
XG(t)
M(t ) B A

dU
dVB"!A

!C
!M (t)

M (t)
0 B A

dU0
dV0 B . (B20)

Introduce now the same transformation as in Appendix A. Changing dV to !dV
gives

A
(K(t)!XK

c
)

!XG(t)
!XG(t)
!M(t) B A

dU
!dVB"!A

!C
!M (t)

!M(t)
0 B A

dU0
!dV0 B . (B21)

Multiplying the lower line by !1 gives

A
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c
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!XG(t)

M(t) B A
dU

!dVB"!A
!C
M (t)

!M(t)
0 B A

dU0
!dV0 B . (B22)

Finally change t to t@"¹!t, and as a consequence L/Lt to !L/Lt@ :

A
(K(t@)!XK

c
)

XG(t@)
!XG(t@)

M(t@) B A
dU

!dVB"A
!C
M (t@)

!M(t@)
0 B

L
Lt@ A

dU
!dVB . (B23)

This problem is the initial problem, except that X must be changed to !X, it is
called the reverse rotation problem.

The mode shapes of the reverse rotation problem are already known. From
a mode shape of the direct problem, l (t@, h), t@ in [0, ¹], the following function is
a solution of the reverse rotation problem:

du(t@, h)"u
r
(t@, n!h)e

r
(h)!uh(t@, n!h)eh(h) ,

dv(t@, h)"v
r
(t@, n!h)e

r
(h)!vh (t@, n!h)eh (h). (B24)

The physical reason for this is the same as in Appendix A (see Figure 5).
Finally, a solution of the adjoint problem is obtained from a solution of the reverse

rotation problem when the relative speed revised, and the time t@ is changed to ¹!t:

dL(t, h)"A
u
r
(¹!t, n!h)

!uh(¹!t, n!h)

!v
r
(¹!t, n!h)

vh (¹!t, n!h) B . (B25)

B.3. FLOQUET DECOMPOSITION OF THE ADJOINT PROBLEM

In the last section, the adjoint problem was introduced. In this section, its Floquet
coe$cients and its eigenfunctions that are investigated.
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Denote by P*, the linear operator that integrates the adjoint equations. Knowing
an initial value of a Cauchy type at time t"0, dl(0, h), P* gives the solution at time
t"¹ as a linear form of the initial condition:

dl(¹, h)"P*[dl(0, h)] . (B26)

It will be shown that the mode shapes of the adjoint problem and the Floquet
coe$cients can be calculated from those of the direct problem. Suppose that
functions li(t, h) of t3[0, ¹], and numbers ji are known:

P[li (0, h)]"jili (0, h) . (B27)

Setting

dli (t, h)"A
ui
r
(¹!t, n!h)

!uih (¹!t, n!h)

!vi
r
(¹!t, n!h)

vh (¹!t, n!h) B , (B28)

a solution of the adjoint problem for t3[0, ¹] is obtained. Moreover, this solution
veri"es

P*[dli (0, h)]"
1
ji

dli (0, h). (B29)

It means that the eigenfunctions of the adjoint problem can be deduced from the
eigenfunctions of the direct problem, and that the Floquet coe$cients of the adjoint
problem are the inverses of the Floquet coe$cients of the direct problem.

This result comes from the property of the function li (t, h):

li (¹, h)"jili (0, h). (B30)

When the relative speed is revised, and the time is changed to ¹!t, are obtains

dli (0, h)"jidli (¹, h). (B31)

Remembering that dli (¹, h)"P*[dli (0, h)], the proof of the previous result is
obtained.

B.4. PROJECTION FORMULAE

B.4.1. General case

Suppose that the set of mode shapes li
0
(h) and the values ji have been calculated.

By propagation li
0

becomes P[li
0
(h)] and is also an eigenvector of P with eigenvalue
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ji. By convention, set l~i
0
"li

0
and j~i"ji. Suppose also that from these values, the

set of adjoint modal shapes dlj
0
(h) and the numbers 1/jj have been calculated.

Choose two modal shapes li
0
(h) and dl~j

0
(h). The "rst one veri"es

P[li (0, h)]"jili (0, h) (B32)

and the second one

P*[dl~j
0

(h)]"
1

jj
dl~j

0
(h) . (B33)

Apply now these properties to relation (B11):

1
jj

dL~j*
0

)A
c
(¹) ) jiLi

0
"dL~j*

0
)A

c
(0) )Li

0
. (B34)

This shows the projection formulae

jiOjjNdL~j
0

* )A
c
(0) )Li

0
"0. (B35)

B.4.2. Special case without damping

When the damping is neglected, the adjoint problem is described by the following
equations

A
K(t)

!XG(t)
XG(t)
M(t) B A

dU
dVB"A

0
M (t)

!M(t)
0 B A

dU0
dV0 B . (B36)

These equations are the same as the direct problem. This means that a mode shape
function of the adjoint problem dlj

0
(h) is in fact a mode shape function of the direct

problem with Floquet coe$cient 1/jj"j~j. The last equality is valid because
without dissipation, the Floquet coe$cient modulus is one.

Remembering that dl~j*
0

"dljT
0

, the projection formulae becomes

jiOjjNLjT
0
)A(0) )Li

0
"0. (B37)

APPENDIX C. THE DIAGONALIZATION IN THE FLOQUET THEORY

For the diagonalization of the operator of propagation P, it is not possible to use
the Lanczos algorithm directly. Nevertheless, a similar algorithm can be used:

f Choose a random vector L
0
, calculate the vector dL

0
with the projection formulae

of Appendix B.
f Use this vector as an initial condition of a Cauchy type in a time integration

algorithm. The most used algorithm is the Hilber Hughes Taylor algorithm (HHT).
The vector L3

1
"P[L

0
] is then obtained.
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f Construct from the vector L3
1

the second vector L
1

using the formula

L
1
"L3

1
!p

1,1
L
0

(C1)

p
1,1

is chosen so that

dL*
0
)A

c
)L

1
"0. (C2)

It is found that p
1,1

is given by

(dL*
0
)A

c
)L

0
)p

1,1
"dL*

0
)A

c
)L3

1
(C3)

Finally, calculate the vector dL
1

with the formulae of Appendix B.
f More generally, suppose that L

0
,2, L

k
have been constructed. Suppose also that

the vectors dL
0
,2, dL

k
are known and verify:

∀mOn dL*
m
)A

c
)L

n
"0. (C4)

f Use the last vector L
k
as a initial condition of a Cauchy type in a time. The vector

L3
k`1

"P[L
k
] is then obtained.

f Construct from the vector L3
k`1

the new vector L
k`1

using the formula

L
k`1

"L3
k`1

!

k`1
+

m/1

p
m,k`1

L
m~1

(C5)

p
m,k`1

is chosen so that

dL*
m~1

)A
c
)L

k`1
"0. (C6)

It is found that p
m,k`1

is given by

(dL*
m~1

)A
c
)L

m~1
)p

m,k`1
"dL*

m~1
)A

c
)L3

k`1
. (C7)

The di!erence from the Lanczos algorithm is that the new vector must be
a combination of all the precedent vectors and not of the two precedent vectors.

f Once vectors L
0
,2,L

K
are known, it is possible to diagonalize the matrix P on this

reduced subspace. On this subspace, P is a Hessemberg superior matrix whose
value is [p

i,j
], plus a rest L

K`1
:

P ) (L
0
,2 ,¸

K
)"(L3

1
,2 ,L3

K`1
)"(L

0
,2 , L

K
)

]A
p
1,1

p
1,2

p
1,3

p
1,4 2

1 p
2,2

p
2,3

p
2,4 2

0 1 p
3,3

p
3,4 2

0 0 1 p
4,4 2

0 0 0 1 2

B#(0,2, L
K`1

) . (C8)
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f This procedure allows to "nd the mode shapes that are in the subspace L
0
,2, L

K
.

Examine this subspace: it contains the Krylov sequence of L
0
, that is, the successive

vectors L
0
, P[L

0
], P2[L

0
],2 ,PK[L

0
]. This sequence is known to contain the

mode shapes of P associated with the Floquet coe$cients of largest modulus. These
are those that are wanted. Moreover, the following property is true by construction

dL*
m
)A

c
)L

K`1
"0 . (C9)

If a mode shape Li is in the subspace, then

dLi* )A
c
)L

K`1
"0 . (C10)

It means that the rest ¸
K`1

is automatically purged from the converged mode
shapes.

This algorithm should be compared with the reasoning used in reference [7]. If the
damping is strong, only the waves emitted at the last instants have a signi"cant
amplitude. In particular, in the equation of propagation with source term, it means
that the initial condition has no in#uence on the solution after a certain time of
integration. In this case, the solution of the problem is the special solution with zero
initial value, after a long time of integration.

In this appendix, the algorithm also proposes to integrate the equations. The
advantages are that the excitation force can be unknown, and that when a mode
shape is contained in the Krylov sequence, it is automatically detected by the
algorithm.
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